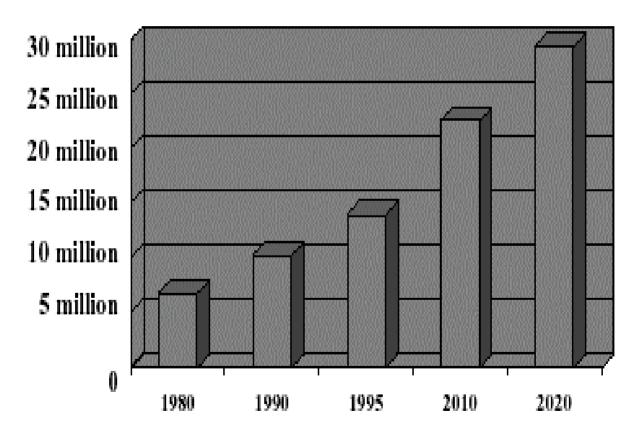
Asthma research at EPA's Nat'l Heal th & Environmental Effects Research Lab: ENVIRONMENTAL RISK FACTORS FOR ASTHMA

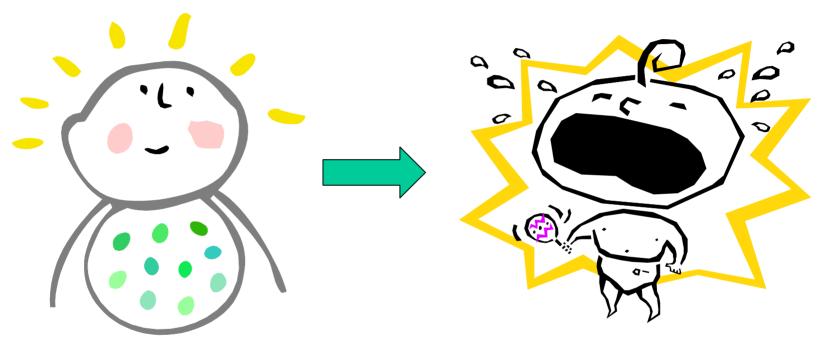
MaryJane K Sel grade


Experimental Toxicol ogy Div., Nat'l Heal th & Environmental Research Laboratory, Office of Research & Devel opment, U.S. EPA, Research Triangle Park, NC

Where is this talk going?

- Why are we concerned about environmental influences on asthma?
- What exactly is asthma?
- What research is EPA's Office of Research and Development (NHEERL) doing in the area of asthma?
- What contributes to cumulative risk?

Increasing Prevalence of Asthma


Total number of persons with asthma, computed and projected, 1980-2020

Pew Environmental Health Commission, Johns Hopkins School of Public Health, May, 2000

RESEARCH & DEVELOPMENT

Two Stages

Induction
Sensitization
(1st exposure)

Elicitation
Challenge
(subsequent exposure)

Characteristics of Allergic Asthma

Immediate Response

Broncho-constriction IgE mediated (IL-4)

Late phase

Hyperresponsive to nonspecific stimuli (methacholine)

Eosinophilic Inflammation

Th2 mediated (IL-5, IL-13)

ORD Asthma Research Strategy*

Research Areas

Induction & exacerbation of asthma

*Combustion-Related Products

*Bioaerosols

Air Toxics

Pesticides

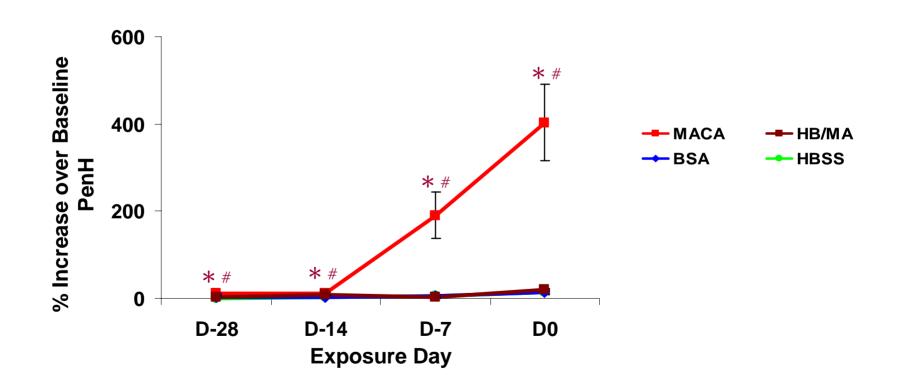
- Susceptibility factor contributing to asthma
- Risk assessment

*http://www.epa.gov/ord/htm/researchstrategies.htm#rs02

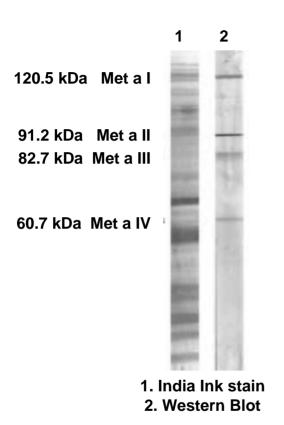
NHEERL RESEARCH THEMES

- Identify and rank mold allergens which may be important in the induction of allergic asthma.
- Assess the effect of air pollutant exposure on the induction of asthma.
- Assess the effect of air pollutant exposure exacerbation phases of asthma.

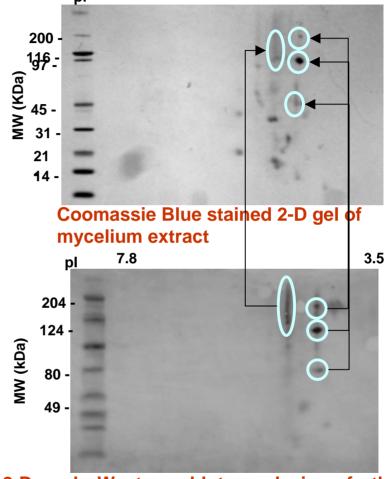
Mold contaminated wall board



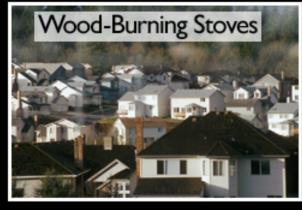
RESEARCH & DEVELOPMENT


Cross Laboratory Project

- Assess molds for potential & potency as asthmagens using an animal model
 - Metarhizium anisopliae (MACA) a biopesticide
 - Stachybotrys chartarum (SCE-1) water damaged building contaminant
 - Penicillium chrysogenum (PCE) a common indoor mold
- Develop exposure assessment tools
- Develop methods to prevent or mitigate mold growth


Multiple Exposures to Mold Resulted in Increased Immediate Respiratory Responses to Aspirated Mold Extract

Several IgE Inducing Proteins Have Been Identified in MACA and SCE-1 (not shown)

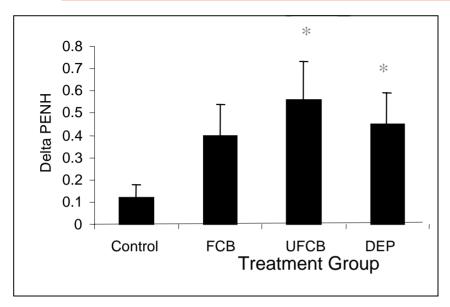


Western Blot analysis using hyper-immune serum against MACA as the primary antibody, identified only 4 proteins that induce IgE. This data suggests only a few proteins in MACA are allergens.

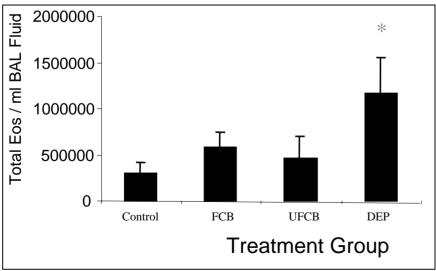
3.5

2-D gel Western blot analysis of the mycelium extract using the hyperimmune serum confirms an IgE inducing protein(s) in the acidic range with high molecular weight

Fine Particles Can Be Emitted Directly or Formed in the Air from Gases


SPECIFIC AIMS

Develop assays to predict the ability of pollutants to enhance the induction or exacerbate the severity of allergic asthma


Test this approach using a prototypic pollutant (diesel exhaust) in *in vivo, in vitro* (animal and human studies) and in epidemiological surveys.

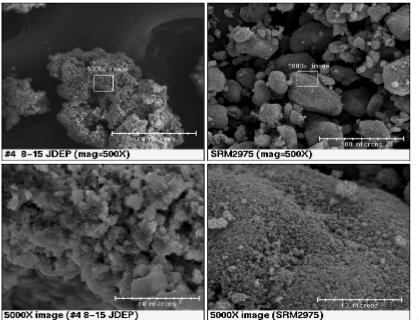
Use this paradigm to test the relative potency of different air pollution components

Adjuvant Effects of Carbonaceous Particles and Diesel


Pre-Exposure to CB and DEP Increases Immediate Airway Responses to HDM

Pre-Exposure to DEP Increases Eosinophilia After HDM Challenge

Singh et al, In Prep


All diesel samples are not created equally!

Building a scientific foundation for sound environmental decisions

Physicochemical Comparison of A-DEP and NIST SRM DEP

Carbon Analyses	A-DEP	SRM-DEP
Total Carbon (%)	60%	65%
Elemental Carbon (%)	9%	60%
Organic Carbon (%)	51%	5%

Singh et al, DeMarini et al, EHP June 2004

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

PACES I

- Population: <u>persistent</u> asthmatics, 8-18 years old, from Chapel Hill area
- Sample size: 28, rolling enrollment, 1-3 children/week, 9/2003-5/2004
- Clinical visits: 1 clinical evaluation (2-3 hr), 1 panel enrollment (45 min.), and 1 completion (10 min.)
- Epidemiological Panel (6 weeks)
 Outcomes measured daily

electronic peak flow meter (2x daily, data sent 1x by modem)

internet daily health diary (1x daily)

Exposures: PM_{fine} & PM_{coarse}

Daily central site (HSD)

Home outdoor: for 1 week only

AAES I

- Population: <u>persistent</u> asthmatics,
 18-50 years old, Chapel Hill area
- Sample size: 12, rolling enrollment, 1 adult/every other week, 9/2003-6/2004
- Epidemiological Panel (6 weeks)
 - Same as PACES I but with additional clinical visits & monitoring
 - 1 pre-study screening (1 hr)
 - Week 1: 5 daily clinical evaluations (2-3 hr)
 - 5 follow-up evaluations (1x week for next 5 wks.)
 - Week 1: Personal Daily PM_{fine} & PM_{coarse}

Cumulative Risks

- Genetics
- Ages
- Environment

Ambient air pollutants Biologics

• Lifestyle